Abstract
AbstractSlowly varying large-scale ocean circulation can provide climate predictability on decadal time scales. It has been hypothesized that the North Atlantic subpolar gyre (SPG) exerts substantial influence on climate predictability. However, a clear identification of the downstream impact of SPG variations is still lacking. Using the MPI-ESM-LR1.2 decadal prediction system, we show that along the Atlantic water pathway, a dynamical link to the SPG causes salinity to be considerably better predicted than temperature. By modulating the slow northward ocean propagation, the subsurface memory of SPG variations enables salinity to be skillfully predicted up to 8 years ahead. In contrast, the SPG loses influence on temperature before Atlantic water penetrates into the Nordic Seas, and in turn, limits temperature to be predicted only 2 years ahead. This study identifies the key role of SPG signals in downstream prediction and highlights how SPG signals determine prediction time scales for different quantities, opening the door for investigating potentially associated predictions in the subarctic for the earth system, marine ecosystems in particular.
Funder
Deutsche Forschungsgemeinschaft
Copernicus Climate Change Service,C3S2-370
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献