Abstract
AbstractExtreme summer temperatures are increasingly common across the Northern Hemisphere and inflict severe socioeconomic and biological consequences. In summer 2021, the Pacific Northwest region of North America (PNW) experienced a 2-week-long extreme heatwave, which contributed to record-breaking summer temperatures. Here, we use tree-ring records to show that summer temperatures in 2021, as well as the rate of summertime warming during the last several decades, are unprecedented within the context of the last millennium for the PNW. In the absence of committed efforts to curtail anthropogenic emissions below intermediate levels (SSP2–4.5), climate model projections indicate a rapidly increasing risk of the PNW regularly experiencing 2021-like extreme summer temperatures, with a 50% chance of yearly occurrence by 2050. The 2021 summer temperatures experienced across the PNW provide a benchmark and impetus for communities in historically temperate climates to account for extreme heat-related impacts in climate change adaptation strategies.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Reference60 articles.
1. Eyring, V. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 3 (Cambridge Univ. Press, 2021).
2. Gulev, S. K. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 2 (Cambridge Univ. Press, 2021).
3. Perkins, S., Alexander, L. & Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, L20714 (2012).
4. AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).
5. van der Wiel, K. & Bintanja, R. Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Commun. Earth Environ. 2, 1–11 (2021).
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献