Abstract
AbstractSea ice extent (SIE) in the Weddell Sea attained exceptionally low levels in April (1.97 million km2) and May (3.06 million km2) 2019, with the values being ~22% below the long-term mean. Using in-situ, satellite and atmospheric reanalysis data, we show the large negative SIE anomalies were driven by the passage of a series of intense and explosive polar cyclones (with record low pressure), also known as atmospheric ‘bombs’, which had atmospheric rivers on their eastern flanks. These storms led to the poleward propagation of record-high swell and wind waves (~9.6 m), resulting in southward ice advection (~50 km). Thermodynamic processes also played a part, including record anomalous atmospheric heat (>138 W m−2) and moisture (>300 kg m−1s−1) fluxes from midlatitudes, along with ocean mixed-layer warming (>2 °C). The atmospheric circulation anomalies were associated with an amplified wave number three pattern leading to enhanced meridional flow between midlatitudes and the Antarctic.
Funder
Ministry of Earth Sciences
Ministry of Earth Sciences (MoES), Government of India
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献