Abstract
AbstractThe sea level pressure variability in the North Pacific modulates the climate of the Arctic and surrounding continents, substantially impacting ecosystems and indigenous communities. Our analysis based on data from the CESM2 Large Ensemble and different Model Intercomparison Project datasets reveals that the interannual variability of Arctic surface air temperature (SAT) gradually decouples from the contemporaneous atmospheric conditions over the North Pacific as external forcing increases in intensity in the future. Future projections show that the North Pacific-Arctic relationship during the fall season consistently weakens in magnitude until the end of this century, and in the 22nd and 23rd centuries, the relationship is negligible throughout the year. We show that under increased greenhouse gas emissions, the regional heat fluxes extensively control the Arctic temperature variability, and the strength of the projected North Pacific-Arctic relationship is strongly dependent on the Arctic sea ice extent. Our results suggest that under future warming, a strong coupling of Arctic SAT with the underlying ocean and a weakening of the meridional pressure gradient driven by an enhanced rate of sea ice retreat will weaken the interannual footprint of North Pacific variability on Arctic SAT. Therefore, we propose that the alarming rate of sea-ice decline over recent decades and projected in the near future could accelerate the rate of decoupling. Further, we suggest that mitigation strategies for the Arctic should focus on regional mechanisms operating on interannual and seasonal timescales.
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Reference52 articles.
1. Moritz, R. E., Bitz, C. M. & Steig, E. J. Dynamics of recent climate change in the Arctic. Science 297, 1497–1502 (2002).
2. Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface–based Arctic amplification. Cryosphere 3, 11–19 (2009).
3. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 77, 85–96 (2011).
4. Davy, R., Chen, L. & Hanna, E. Arctic amplification metrics. Int. J. Climatol. 38, 4384–4394 (2018).
5. Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121 (2019).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献