Historical total ozone radiative forcing derived from CMIP6 simulations

Author:

Skeie Ragnhild BieltvedtORCID,Myhre GunnarORCID,Hodnebrog ØivindORCID,Cameron-Smith Philip J.,Deushi Makoto,Hegglin Michaela I.ORCID,Horowitz Larry W.ORCID,Kramer Ryan J.ORCID,Michou Martine,Mills Michael J.,Olivié Dirk J. L.,Connor Fiona M. O’ORCID,Paynter David,Samset Bjørn H.ORCID,Sellar AlistairORCID,Shindell DrewORCID,Takemura ToshihikoORCID,Tilmes Simone,Wu TongwenORCID

Abstract

AbstractRadiative forcing (RF) time series for total ozone from 1850 up to the present day are calculated based on historical simulations of ozone from 10 climate models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition, RF is calculated for ozone fields prepared as an input for CMIP6 models without chemistry schemes and from a chemical transport model simulation. A radiative kernel for ozone is constructed and used to derive the RF. The ozone RF in 2010 (2005–2014) relative to 1850 is 0.35 W m−2 [0.08–0.61] (5–95% uncertainty range) based on models with both tropospheric and stratospheric chemistry. One of these models has a negative present-day total ozone RF. Excluding this model, the present-day ozone RF increases to 0.39 W m−2 [0.27–0.51] (5–95% uncertainty range). The rest of the models have RF close to or stronger than the RF time series assessed by the Intergovernmental Panel on Climate Change in the fifth assessment report with the primary driver likely being the new precursor emissions used in CMIP6. The rapid adjustments beyond stratospheric temperature are estimated to be weak and thus the RF is a good measure of effective radiative forcing.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Reference66 articles.

1. Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973 (2015).

2. WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project. Report No. 58. 588 (World Meteorological Organization, Geneva, Switzerland, 2018).

3. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

4. Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090 (2013).

5. Gaudel, A. et al. Tropospheric Ozone Assessment Report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anth. 6, 39 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3