Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations

Author:

Ullah WaheedORCID,Zhu Chenxia,Wang GuojieORCID,Hagan Daniel Fiifi Tawia,Lou Dan,Wei Jiangfeng,Karim Aisha,Li Shijie,Su Buda,Jiang Tong

Abstract

AbstractAs an internal forcing of the earth climate system, soil moisture (SM) significantly influences the water and energy cycle by controlling evapotranspiration and terrestrial solar energy. The current study used observed precipitation, remotely sensed SM, and reanalysis of atmosphere and land parameters to assess the East Asian Monsoon (EAM) precipitation variability due to meridional SM oscillations across China. A generalized linear method, namely coupled manifold technique (CMT) for assessing the reciprocal forcing between two climate fields and numerical simulations are applied to SM and EAM precipitation. We find that the EAM precipitation interannual variability between north and south China significantly correlates with SM meridional oscillation. The CMT results further showed that SM forcing has a significant (99% confidence) influence on the EAM precipitation explaining about 0.40 of the variance ratio in north and south China. The EAM and SM composite analysis show that the wetter (drier) north (south) oscillates the EAM precipitation over the north (south) of China and vice versa due to SM thermal controls. We then used control and sensitivity simulations with SM observations to further validate the findings implying that SM can potentially improve the interannual EAM forecast skills. The model results show that a wetter (drier) north (south) results in negative (positive) sensible heat (latent heat) anomalies that impact the boundary layer and propagate to change the meridional atmospheric heating profile. When positive (negative) SM anomalies exist over northern (southern) China, the zonal easterlies and extratropical westerlies move to north China causing above-normal precipitation that descends into southern China, suppressing subtropical westerlies and precipitation in southern China. On the contrary, a dry (wet) north (south) favors intensified subtropical westerlies and precipitation in southern China. The findings have dire implications for the water and energy cycle of the region in the projected wetting and drying patterns of the north (south).

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3