Sharp rises in large-scale, long-duration precipitation extremes with higher temperatures over Japan

Author:

Hatsuzuka DaisukeORCID,Sato TomonoriORCID,Higuchi Yoshihito

Abstract

AbstractThe intensity of extreme precipitation has been projected to increase with increasing air temperature according to the thermodynamic Clausius–Clapeyron (C-C) relation. Over the last decade, observational studies have succeeded in demonstrating the scaling relationship between extreme precipitation and temperature to understand the projected changes. In mid-latitude coastal regions, intense precipitation is strongly influenced by synoptic patterns and a particular characteristic is the long-lasting heavy precipitation driven by abundant moisture transport. However, the effect of synoptic patterns on the scaling relationship remains unclear. Here we conduct an event-based analysis using long-term historical records in Japan, to distinguish extreme precipitation arising from different synoptic patterns. We find that event peak intensity increases more sharply in persistent precipitation events, which lasted more than 10 h, sustained by atmospheric river-like circulation patterns. The long duration-accumulated precipitation extremes also increase with temperature at a rate considerably above the C-C rate at higher temperatures. Our result suggests that long-lasting precipitation events respond more to warming compared with short-duration events. This greatly increases the risks of future floods and landslides in the mid-latitude coastal regions.

Funder

MEXT | Japan Society for the Promotion of Science

Integrated Research Program for Advancing Climate Models (TOUGOU) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT)

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3