A diurnal story of Δ17O($$\rm{NO}_{3}^{-}$$) in urban Nanjing and its implication for nitrate aerosol formation

Author:

Zhang Yan-Lin,Zhang Wenqi,Fan Mei-Yi,Li Jianghanyang,Fang HuanORCID,Cao Fang,Lin Yu-Chi,Wilkins Benjamin Paul,Liu Xiaoyan,Bao Mengying,Hong YihangORCID,Michalski Greg

Abstract

AbstractInorganic nitrate production is critical in atmospheric chemistry that reflects the oxidation capacity and the acidity of the atmosphere. Here we use the oxygen anomaly of nitrate (Δ17O($$\rm{NO}_{3}^{-}$$ NO 3 )) in high-time-resolved (3 h) aerosols to explore the chemical mechanisms of nitrate evolution in fine particles during the winter in Nanjing, a megacity of China. The continuous Δ17O($$\rm{NO}_{3}^{-}$$ NO 3 ) observation suggested the dominance of nocturnal chemistry (NO3 + HC/H2O and N2O5 + H2O/Cl) in nitrate formation in the wintertime. Significant diurnal variations of nitrate formation pathways were found. The contribution of nocturnal chemistry increased at night and peaked (72%) at midnight. Particularly, nocturnal pathways became more important for the formation of nitrate in the process of air pollution aggravation. In contrast, the contribution of daytime chemistry (NO2 + OH/H2O) increased with the sunrise and showed a highest fraction (48%) around noon. The hydrolysis of N2O5 on particle surfaces played an important role in the daytime nitrate production on haze days. In addition, the reaction of NO2 with OH radicals was found to dominate the nitrate production after nitrate chemistry was reset by the precipitation events. These results suggest the importance of high-time-resolved observations of Δ17O($$\rm{NO}_{3}^{-}$$ NO 3 ) for exploring dynamic variations in reactive nitrogen chemistry.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3