New formation and fate of Isoprene SOA markers revealed by field data-constrained modeling

Author:

Zhang Jie,Liu Junyi,Ding Xiang,He Xiao,Zhang TianleORCID,Zheng Mei,Choi Minsu,Isaacman-VanWertz Gabriel,Yee LindsayORCID,Zhang Haofei,Misztal Pawel,Goldstein Allen H.ORCID,Guenther Alex B.ORCID,Budisulistiorini Sri Hapsari,Surratt Jason D.ORCID,Stone Elizabeth A.,Shrivastava ManishORCID,Wu Dui,Yu Jian ZhenORCID,Ying Qi

Abstract

AbstractParticulate 2-methyltetrols (2-MT) and 2-methylglyceric acid (2-MG) are typically used to indicate the abundance of isoprene-derived secondary organic aerosols (SOA). However, their formation and fate are not fully understood. In this study, we showed that particulate 2-MT and 2-MG collected at multiple monitoring sites under a wide range of atmospheric and emission conditions, with concentrations spanning six orders of magnitudes, are well reproduced with an expanded isoprene-SOA scheme implemented into the Community Multiscale Air Quality (CMAQ) model. The scheme considers their three-phase (gas-aqueous-organic phase) partitioning, formation from acid-driven multiphase reactions, and degradation by OH radicals in the gas and aqueous phases. The model results reveal that a non-aqueous formation pathway or direct biogenic emission is needed to supplement the commonly assumed acid-driven multiphase reaction process to explain the observed 2-MT concentrations. This missing pathway contributes to 20–40% of 2-MT in areas with aerosol pH<2 and more than 70% under less acidic conditions (pH~2–5), such as those encountered in the western US and China. The typical summertime gas-phase photochemical lifetimes of 2-MT and 2-MG are estimated to be 4–6 and 20–30 h, respectively, and their aqueous lifetimes are approximately 20–40 h. Our simulations show that predicted 2-MT is mainly influenced by its aqueous phase loss to OH, but 2-MG is more sensitive to gas phase OH loss due to the preferential partitioning of the two tracers in the aqueous and gas phases, respectively.

Funder

Partly supported by M. Shrivastava’s DOE Biological and Environmental Research (BER) Early Career Project at the Pacific Northwest National Laboratory

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3