Record-shattering 2023 Spring heatwave in western Mediterranean amplified by long-term drought

Author:

Lemus-Canovas MarcORCID,Insua-Costa DamiánORCID,Trigo Ricardo M.,Miralles Diego G.ORCID

Abstract

AbstractThe western Mediterranean region experienced an exceptional and unprecedented early heatwave in April 2023. By shattering historical temperature records, especially in the Iberian Peninsula and northwestern Africa, this extreme offers a stark illustration of a drought–heatwave compound event. Here, we investigate the soil moisture–temperature interactions that underpinned this event, using the most up-to-date observations and a robust statistical analysis. Our results reveal that soil moisture deficit preconditions, concurring with a strong subtropical ridge as a synoptic driver, had a key contribution to the amplification and duration of this record-breaking heatwave. Specifically, we estimate that the most extreme temperature records would have been 4.53 times less likely and 2.19 °C lower had the soils been wet. These findings indicate that soil moisture content may be a crucial variable for seasonal forecasting of early HW in this region and in other Mediterranean climate regimes that are already suffering an increment in the frequency of compound drought–heatwave events.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3