Early-onset of Atlantic Meridional Overturning Circulation weakening in response to atmospheric CO2 concentration

Author:

Dima MihaiORCID,Nichita Denis R.,Lohmann Gerrit,Ionita MonicaORCID,Voiculescu Mirela

Abstract

AbstractThe Atlantic Meridional Overturning Circulation (AMOC), a tipping component of the climate system, is projected to slowdown during the 21st century in response to increased atmospheric CO2 concentration. The rate and start of the weakening are associated with relatively large uncertainties. Observed sea surface temperature-based reconstructions indicate that AMOC has been weakening since the mid-20th century, but its forcing factors are not fully understood. Here we provide dynamical observational evidence that the increasing atmospheric CO2 concentration affects the North Atlantic heat fluxes and precipitation rate, and weakens AMOC, consistent with numerical simulations. The inferred weakening, starting in the late 19th century, earlier than previously suggested, is estimated at 3.7 ± 1.0 Sv over the 1854–2016 period, which is larger than it is shown in numerical simulations (1.4 ± 1.4 Sv).

Funder

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Alfred Wegener Institute for Polar and Marine Research

"Dunarea de Jos" University

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Reference37 articles.

1. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

2. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

3. Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the Atlantic Thermohaline Circulation. Clim. Change 54, 251–267 (2002).

4. Collins, M., et al. Long-term climate change: Projections, commitments and irreversibility, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

5. Collins M. et al. Extremes, abrupt changes and managing risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019). Available online: https://www.ipcc.ch/srocc/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3