Abstract
AbstractThe near-surface temperature in Mediterranean climate-type regions has increased overall similarly or more rapidly than the global mean rates. Although these regions have comparable climate characteristics and are located at similar latitudes, recent warming acceleration is most pronounced in the Mediterranean Basin. Here, we investigate the contributions of several climate drivers to regional warming anomalies. We consider greenhouse gases, aerosols, solar irradiance, land–atmosphere interactions, and natural climate variability modes. Our results highlight the dominant role of anthropogenic greenhouse gas radiative forcing in all Mediterranean climate-type regions, particularly those in the northern hemisphere. In the Mediterranean Basin, the recent warming acceleration is largely due to the combined effect of declining aerosols and a negative trend in near-surface soil moisture. While land-atmosphere feedbacks are also important in other locations (e.g., California and Southern Africa), this synergy is unique in the Mediterranean Basin. These two regional climate drivers have natural and anthropogenic components of equivalent importance. Such feedbacks are not fully resolved in the current regional climate projections.
Funder
EC | Horizon 2020 Framework Programme
General Secretariat for Research and Technology
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献