Abstract
AbstractCoacervation, or liquid-liquid phase separation (LLPS) of biomacromolecules, is increasingly recognized to play an important role both intracellularly and in the extracellular space. Central questions that remain to be addressed are the links between the material properties of coacervates (condensates) and both the primary and the secondary structures of their constitutive building blocks. Short LLPS-prone peptides, such as GY23 variants explored in this study, are ideal model systems to investigate these links because simple sequence modifications and the chemical environment strongly affect the viscoelastic properties of coacervates. Herein, a systematic investigation of the structure/property relationships of peptide coacervates was conducted using GY23 variants, combining biophysical characterization (plate rheology and surface force apparatus, SFA) with secondary structure investigations by infrared (IR) and circular dichroism (CD) spectroscopy. Mutating specific residues into either more hydrophobic or more hydrophilic residues strongly regulates the viscoelastic properties of GY23 coacervates. Furthermore, the ionic strength and kosmotropic characteristics (Hofmeister series) of the buffer in which LLPS is induced also significantly impact the properties of formed coacervates. Structural investigations by CD and IR indicate a direct correlation between variations in properties induced by endogenous (peptide sequence) or exogenous (ionic strength, kosmotropic characteristics, aging) factors and the β-sheet content within coacervates. These findings provide valuable insights to rationally design short peptide coacervates with programmable materials properties that are increasingly used in biomedical applications.
Funder
Ministry of Education - Singapore
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
2. Peran, I. & Mittag, T. Molecular structure in biomolecular condensates. Curr. Opin. Struct. Biol. 60, 17–26 (2020).
3. Lin, Y., Fichou, Y., Zeng, Z., Hu, N. Y. & Han, S. Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions. ACS Chemical. Neuroscience 11, 615–627 (2020).
4. Xing, Y. et al. Amyloid Aggregation under the Lens of Liquid–Liquid Phase Separation. The Journal of Physical Chemistry Letters 12, 368–378 (2021).
5. Kim, H. J., Yang, B., Park, T. Y., Lim, S. & Cha, H. J. Complex coacervates based on recombinant mussel adhesive proteins: their characterization and applications. Soft Matter 13, 7704–7716 (2017).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献