Probing active sites for carbon oxides hydrogenation on Cu/TiO2 using infrared spectroscopy

Author:

Shaaban EhabORCID,Li Gonghu

Abstract

AbstractThe valorization of carbon oxides on metal/metal oxide catalysts has been extensively investigated because of its ecological and economical relevance. However, the ambiguity surrounding the active sites in such catalysts hampers their rational development. Here, in situ infrared spectroscopy in combination with isotope labeling revealed that CO molecules adsorbed on Ti3+ and Cu+ interfacial sites in Cu/TiO2 gave two disparate carbonyl peaks. Monitoring each of these peaks under various conditions enabled tracking the adsorption of CO, CO2, H2, and H2O molecules on the surface. At room temperature, CO was initially adsorbed on the oxygen vacancies to produce a high frequency CO peak, Ti3+−CO. Competitive adsorption of water molecules on the oxygen vacancies eventually promoted CO migration to copper sites to produce a low-frequency CO peak. In comparison, the presence of gaseous CO2 inhibits such migration by competitive adsorption on the copper sites. At temperatures necessary to drive CO2 and CO hydrogenation reactions, oxygen vacancies can still bind CO molecules, and H2 spilled-over from copper also competed for adsorption on such sites. Our spectroscopic observations demonstrate the existence of bifunctional active sites in which the metal sites catalyze CO2 dissociation whereas oxygen vacancies bind and activate CO molecules.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3