Abstract
AbstractAdatom engineering represents a highly promising opportunity for enhancing electrochemical CO reduction reaction (CORR). However, the aggregation of adatoms under typical reaction conditions often leads to a decline in catalyst activity. Recent studies have revealed that N-heterocyclic carbene (NHC) can stabilize surface adatoms. Herein, based on density functional theory calculations, we reveal a significant enhancement in the catalytic activity of Cu adatoms decorated with NHC molecules for CORR. The NHC decoration strengthens the interaction between the dxy orbital of the Cu adatom and the px orbital of the C atom, reducing the energy barriers in both CO hydrogenation and C-C coupling steps. Moreover, the CORR catalytic activity of the NHC decorated adatom can be further improved by tuning the side groups of NHC molecules. These results provide insights for the design of efficient CORR catalysts and offer a theoretical framework that can be extended to other hydrogenation reactions.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry