Abstract
AbstractDespite having significant applications in the construction of controlled delivery systems with high anti-interference capability, to our knowledge dual-controlled molecular release has not yet been achieved based on small molecular/supramolecular entities. Herein, we report a dual-controlled release system based on coordination cages, for which releasing the guest from the cage demands synchronously altering the coordinative metal cations and the solvent. The cages, Hg5L2 and Ag5L2, are constructed via coordination-driven self-assembly of a corannulene-based ligand. While Hg5L2 shows a solvent-independent guest encapsulation in all the studied solvents, Ag5L2 is able to encapsulate the guests in only some of the solvents, such as acetone-d6, but will liberate the encapsulated guests in 1,1,2,2-tetrachloroethane-d2. Hg5L2 and Ag5L2 are interconvertible. Thus, the release of guests from Hg5L2 in acetone-d6 can be achieved, but requires two separate operations, including metal substitutions and a change of the solvent. Dual-controlled systems as such could be useful in complicated molecular release process to avoid those undesired stimulus-responses.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献