Flow chemistry controls self-assembly and cargo in Belousov-Zhabotinsky driven polymerization-induced self-assembly

Author:

Hou Liman,Dueñas-Díez MartaORCID,Srivastava RohitORCID,Pérez-Mercader JuanORCID

Abstract

AbstractAmphiphilic block-copolymer vesicles are increasingly used for medical and chemical applications, and a novel method for their transient self-assembly orchestrated by periodically generated radicals during the oscillatory Belousov-Zhabotinsky (BZ) reaction was recently developed. Here we report how combining this one pot polymerization-induced self-assembly (PISA) method with a continuously stirred tank reactor (CSTR) strategy allows for continuous and reproducible control of both the PISA process and the chemical features (e.g. the radical generation and oscillation) of the entrapped cargo. By appropriately tuning the residence time (τ), target degree of polymerization (DP) and the BZ reactants, intermediate self-assembly structures are also obtained (micelles, worms and nano-sized vesicles). Simultaneously, the chemical properties of the cargo at encapsulation are known and tunable, a key advantage over batch operation. Finally, we also show that BZ-driven polymerization in CSTR additionally supports more non-periodic dynamics such as bursting.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3