Abstract
AbstractThe quest for effective virtual screening algorithms is hindered by the scarcity of training data, calling for innovative approaches. This study presents the use of experimental electron density (ED) data for improving active compound enrichment in virtual screening, supported by ED’s ability to reflect the time-averaged behavior of ligands and solvents in the binding pocket. Experimental ED-based grid matching score (ExptGMS) was developed to score compounds by measuring the degree of matching between their binding conformations and a series of multi-resolution experimental ED grids. The efficiency of ExptGMS was validated using both in silico tests with the Directory of Useful Decoys-Enhanced dataset and wet-lab tests on Covid-19 3CLpro-inhibitors. ExptGMS improved the active compound enrichment in top-ranked molecules by approximately 20%. Furthermore, ExptGMS identified four active inhibitors of 3CLpro, with the most effective showing an IC50 value of 1.9 µM. We also developed an online database containing experimental ED grids for over 17,000 proteins to facilitate the use of ExptGMS for academic users.
Funder
Beijing Municipal Science and Technology Commission
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献