Spectroscopic characterization of two peroxyl radicals during the O2-oxidation of the methylthio radical

Author:

Wu Zhuang,Shao Xin,Zhu Bifeng,Wang Lina,Lu Bo,Trabelsi Tarek,Francisco Joseph S.ORCID,Zeng XiaoqingORCID

Abstract

AbstractThe atmospheric oxidation of dimethyl sulfide (DMS) yields sulfuric acid and methane sulfonic acid (MSA), which are key precursors to new particles formed via homogeneous nucleation and further cluster growth in air masses. Comprehensive experimental and theoretical studies have suggested that the oxidation of DMS involves the formation of the methylthio radical (CH3S•), followed by its O2-oxidation reaction via the intermediacy of free radicals CH3SOx• (x = 1–4). Therefore, capturing these transient radicals and disclosing their reactivity are of vital importance in understanding the complex mechanism. Here, we report an optimized method for efficient gas-phase generation of CH3S• through flash pyrolysis of S-nitrosothiol CH3SNO, enabling us to study the O2-oxidation of CH3S• by combining matrix-isolation spectroscopy (IR and UV–vis) with quantum chemical computations at the CCSD(T)/aug-cc-pV(X + d)Z (X = D and T) level of theory. As the key intermediate for the initial oxidation of CH3S•, the peroxyl radical CH3SOO• forms by reacting with O2. Upon irradiation at 830 nm, CH3SOO• undergoes isomerization to the sulfonyl radical CH3SO2• in cryogenic matrixes (Ar, Ne, and N2), and the latter can further combine with O2 to yield another peroxyl radical CH3S(O)2OO• upon further irradiation at 440 nm. Subsequent UV-light irradiation (266 nm) causes dissociation of CH3S(O)2OO• to CH3SO2•, CH2O, SO2, and SO3. The IR spectroscopic identification of the two peroxyl radicals CH3SOO• and CH3S(O)2OO• is also supported by 18O- and 13C-isotope labeling experiments.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3