Abstract
AbstractDespite recent advances in the use of porous materials as efficient heterogeneous catalysts which operate through effectively trapping reagents in a well-defined space, continuously uptaking reagents to substitute products in the cavity for efficient product turnover still remains challenging. Here, a porous catalyst is endowed with ‘breathing’ characteristics by thermal stimulus, which can enable the efficient exchange of reagents and products through reversible stacking from inflated aromatic hexamers to contracted trimeric macrocycles. The contracted super-hydrophobic tubular interior with pyridine environment exhibits catalytic activity towards a nucleophilic aromatic substitution reaction by promoting interactions between concentrated reagents and active sites. Subsequent expansion facilitates the exchange of products and reagents, which ensures the next reaction. The strategy of mesoporous modification with inflatable transition may provide a new insight for construction of dynamic catalysts.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献