Abstract
AbstractIn our daily life, some of the most valuable commodities are preprogrammed or preassembled by a manufacturer; the end-user puts together the final product and gathers properties or function as desired. Here, we present a chemical approach to preassembled materials, namely supramolecular polymer networks (SPNs), which wait for an operator’s command to organize autonomously. In this prototypical system, the controlled disassembly of a metastable interlocked molecule (rotaxane) liberates an active species to the medium. This species crosslinks a ring-containing polymer and assembles with a reporting macrocycle to produce colorful SPNs. We demonstrate that by using identical preprogrammed systems, one can access multiple supramolecular polymer networks with different degrees of fluidity (μ* = 2.5 to 624 Pa s-1) and color, all as desired by the end-user.
Funder
ENEOS paid GW’s salary while he worked at UBC
Consejo Nacional de Ciencia y Tecnología
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献