Computational discovery of molecular C60 encapsulants with an evolutionary algorithm

Author:

Miklitz Marcin,Turcani LukasORCID,Greenaway Rebecca L.,Jelfs Kim E.ORCID

Abstract

AbstractComputation is playing an increasing role in the discovery of materials, including supramolecular materials such as encapsulants. In this work, a function-led computational discovery using an evolutionary algorithm is used to find potential fullerene (C60) encapsulants within the chemical space of porous organic cages. We find that the promising host cages for C60 evolve over the simulations towards systems that share features such as the correct cavity size to host C60, planar tri-topic aldehyde building blocks with a small number of rotational bonds, di-topic amine linkers with functionality on adjacent carbon atoms, high structural symmetry, and strong complex binding affinity towards C60. The proposed cages are chemically feasible and similar to cages already present in the literature, helping to increase the likelihood of the future synthetic realisation of these predictions. The presented approach is generalisable and can be tailored to target a wide range of properties in molecular material systems.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in supramolecular fullerene chemistry;Chemical Society Reviews;2024

2. Evolutionary Algorithms and Workflows for De Novo Catalyst Design;Comprehensive Computational Chemistry;2024

3. Reverse Designing the Wavelength-Specific Thermally Activation Delayed Fluorescent Molecules Using a Genetic Algorithm Coupled with Cheap QM Methods;The Journal of Physical Chemistry A;2023-07-07

4. Porous Molecular Materials;AI‐Guided Design and Property Prediction for Zeolites and Nanoporous Materials;2023-01-24

5. Materials Precursor Score: Modeling Chemists’ Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors;Journal of Chemical Information and Modeling;2021-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3