Crystalline hydrogen bonding of water molecules confined in a metal-organic framework

Author:

Bae JinheeORCID,Park Sun HoORCID,Moon DohyunORCID,Jeong Nak CheonORCID

Abstract

AbstractHydrogen bonding (H-bonding) of water molecules confined in nanopores is of particular interest because it is expected to exhibit chemical features different from bulk water molecules due to their interaction with the wall lining the pores. Herein, we show a crystalline behavior of H-bonded water molecules residing in the nanocages of a paddlewheel metal-organic framework, providing in situ and ex situ synchrotron single-crystal X-ray diffraction and Raman spectroscopy studies. The crystalline H-bond is demonstrated by proving the vibrational chain connectivity arising between hydrogen bond and paddlewheel Cu−Cu bond in sequentially connected Cu–Cu·····coordinating H2O·····H-bonded H2O and by proving the spatial ordering of H-bonded water molecules at room temperature, where they are anticipated to be disordered. Additionally, we show a substantial distortion of the paddlewheel Cu2+-centers that arises with water coordination simultaneously. Also, we suggest the dynamic coordination bond character of the H-bond of the confined water, by which an H-bond transitions to a coordination-bond at the Cu2+-center instantaneously after dissociating a previously coordinated H2O.

Funder

Daegu Gyeongbuk Institute of Science and Technology

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3