Abstract
AbstractHydrogen bonding (H-bonding) of water molecules confined in nanopores is of particular interest because it is expected to exhibit chemical features different from bulk water molecules due to their interaction with the wall lining the pores. Herein, we show a crystalline behavior of H-bonded water molecules residing in the nanocages of a paddlewheel metal-organic framework, providing in situ and ex situ synchrotron single-crystal X-ray diffraction and Raman spectroscopy studies. The crystalline H-bond is demonstrated by proving the vibrational chain connectivity arising between hydrogen bond and paddlewheel Cu−Cu bond in sequentially connected Cu–Cu·····coordinating H2O·····H-bonded H2O and by proving the spatial ordering of H-bonded water molecules at room temperature, where they are anticipated to be disordered. Additionally, we show a substantial distortion of the paddlewheel Cu2+-centers that arises with water coordination simultaneously. Also, we suggest the dynamic coordination bond character of the H-bond of the confined water, by which an H-bond transitions to a coordination-bond at the Cu2+-center instantaneously after dissociating a previously coordinated H2O.
Funder
Daegu Gyeongbuk Institute of Science and Technology
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献