The anatomy of unfolding of Yfh1 is revealed by site-specific fold stability analysis measured by 2D NMR spectroscopy

Author:

Puglisi RitaORCID,Karunanithy Gogulan,Hansen D. Flemming,Pastore AnnalisaORCID,Temussi Piero AndreaORCID

Abstract

AbstractMost techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.

Funder

UK Dementia Research Institute (RE1 3556) that is funded by the Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unfolding under Pressure: An NMR Perspective;ChemBioChem;2023-07-25

2. Crowding revisited: Open questions and future perspectives;Trends in Biochemical Sciences;2022-12

3. A simple model of protein cold denaturation;Chemical Physics Letters;2022-05

4. Recipes for Inducing Cold Denaturation in an Otherwise Stable Protein;Journal of the American Chemical Society;2022-04-15

5. Heat and cold denaturation of yeast frataxin: The effect of pressure;Biophysical Journal;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3