Nuclear-driven production of renewable fuel additives from waste organics

Author:

Plant Arran GeorgeORCID,Kos Bor,Jazbec Anže,Snoj LukaORCID,Najdanovic-Visak VesnaORCID,Joyce Malcolm JohnORCID

Abstract

AbstractNon-intermittent, low-carbon energy from nuclear or biofuels is integral to many strategies to achieve Carbon Budget Reduction targets. However, nuclear plants have high, upfront costs and biodiesel manufacture produces waste glycerol with few secondary uses. Combining these technologies, to precipitate valuable feedstocks from waste glycerol using ionizing radiation, could diversify nuclear energy use whilst valorizing biodiesel waste. Here, we demonstrate solketal (2,2-dimethyl-1,3-dioxolane-4-yl) and acetol (1-hydroxypropan-2-one) production is enhanced in selected aqueous glycerol-acetone mixtures with γ radiation with yields of 1.5 ± 0.2 µmol J−1 and 1.8 ± 0.2 µmol J−1, respectively. This is consistent with the generation of either the stabilized, protonated glycerol cation (CH2OH-CHOH-CH2OH2+ ) from the direct action of glycerol, or the hydronium species, H3O+, via water radiolysis, and their role in the subsequent acid-catalyzed mechanisms for acetol and solketal production. Scaled to a hypothetically compatible range of nuclear facilities in Europe (i.e., contemporary Pressurised Water Reactor designs or spent nuclear fuel stores), we estimate annual solketal production at approximately (1.0 ± 0.1) × 104 t year−1. Given a forecast increase of 5% to 20% v/v% in the renewable proportion of commercial petroleum blends by 2030, nuclear-driven, biomass-derived solketal could contribute towards net-zero emissions targets, combining low-carbon co-generation and co-production.

Funder

RCUK | Engineering and Physical Sciences Research Council

Lancaster University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Reference63 articles.

1. IPCC. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report. 1329–1356 (IPCC, 2015).

2. Schmeda-Lopez, D., McConnaughy, T. B. & McFarland, E. W. Radiation enhanced chemical production: Improving the value proposition of nuclear power. Energy 162, 491–504 (2018).

3. Swallow, A. J. Radiation Chemistry of Organic Compounds: International Series of Monographs on Radiation Effects in Materials. (Elsevier, 2016).

4. Woods, R. J. & Pikaev, A. K. Applied Radiation Chemistry: Radiation Processing 37 (John Wiley & Sons, 1994).

5. Swallow, A. in The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis (eds Baxendale, J. H. & Busi, F.) 289–315 (Springer, 1982).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3