Abstract
AbstractVibrational Circular Dichroism (VCD) spectra often differ strongly from one conformer to another, even within the same absolute configuration of a molecule. Simulated molecular VCD spectra typically require expensive quantum chemical calculations for all conformers to generate a Boltzmann averaged total spectrum. This paper reports whether machine learning (ML) can partly replace these quantum chemical calculations by capturing the intricate connection between a conformer geometry and its VCD spectrum. Three hypotheses concerning the added value of ML are tested. First, it is shown that for a single stereoisomer, ML can predict the VCD spectrum of a conformer from solely the conformer geometry. Second, it is found that the ML approach results in important time savings. Third, the ML model produced is unfortunately hardly transferable from one stereoisomer to another.
Funder
Fonds Wetenschappelijk Onderzoek
Bijzonder Onderzoeksfonds
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献