Discovery, nuclear properties, synthesis and applications of technetium-101

Author:

Johnstone Erik V.ORCID,Mayordomo Natalia,Mausolf Edward J.

Abstract

AbstractTechnetium-101 (101Tc) has been poorly studied in comparison with other Tc isotopes, although it was first identified over ~80 years ago shortly after the discovery of the element Tc itself. Its workable half-life and array of production modes, i.e., light/heavy particle reactions, fission, fusion-evaporation, etc., allow it to be produced and isolated using an equally diverse selection of chemical separation pathways. The inherent nuclear properties of 101Tc make it important for research and applications related to radioanalytical tracer studies, as a fission signature, fusion materials, fission reactor fuels, and potentially as a radioisotope for nuclear medicine. In this review, an aggregation of the known literature concerning the chemical, nuclear, and physical properties of 101Tc and some its applications are presented. This work aims at providing an up-to-date and first-of-its-kind overview of 101Tc that could be of importance for further development of the fundamental and applied nuclear and radiochemistry of 101Tc.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3