Optimal methodology for explicit solvation prediction of band edges of transition metal oxide photocatalysts
Author:
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Link
http://www.nature.com/articles/s42004-019-0179-3.pdf
Reference70 articles.
1. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).
2. Babu, V. J., Vempati, S., Uyar, T. & Ramakrishna, S. Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys. 17, 2960–2986 (2015).
3. Long, M. et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110, 20211–20216 (2006).
4. Greiner, M. T. et al. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76–81 (2012).
5. Zhang, J., Liu, Z. & Liu, Z. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8, 9684–9691 (2016).
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Synergistic water oxidation and reduction over ruthenium phosphide catalytic sites towards photocatalytic degradation of emerging contaminants coupled with hydrogen production;Separation and Purification Technology;2025-02
2. Photoelectrochemical properties of Cu2O/CuO microstructure grown on cu foil using dielectric barrier discharge plasmas;Journal of Nanoparticle Research;2024-07
3. Absolute band-edge energies are over-emphasized in the design of photoelectrochemical materials;Nature Catalysis;2024-06-26
4. Surface Adsorption and Photoinduced Degradation: A Study of Spinel Ferrite Nanomaterials for Removal of a Model Organic Pollutant from Water;Chemistry of Materials;2024-04-24
5. Unveiling the cutting-edge progress in boosting the photoelectrochemical water-splitting efficiency of BiVO4 photoanode with transition metal-based materials for sustainable hydrogen production;Journal of Electroanalytical Chemistry;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3