Graphene oxide and starch gel as a hybrid binder for environmentally friendly high-performance supercapacitors

Author:

Rapisarda MarioORCID,Marken FrankORCID,Meo MicheleORCID

Abstract

AbstractAlternative green binders processable in water are being investigated for the development of more efficient and sustainable supercapacitors. However, their electrochemical performances have fallen within or below the average of commercially available devices. Herein, an optimised gelled mixture of graphene oxide (GO) and starch, a biopolymer belonging to the family of polysaccharides, is proposed. The molecular interactions between the two components enhance electrodes structure and morphology, as well as their thermal stability. GO, thanks to its reduction that is initially triggered by reactions with starch and further progressed by thermal treatment, actively contributes to the charge storage process of the supercapacitors. The optimised electrodes can deliver a specific capacitance up to 173.8 F g−1 while providing good rate capabilities and long-term stability over 17,000 cycles. These are among the best electrochemical performances achieved by environmentally friendly supercapacitors using a biomaterial as a binder.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Reference75 articles.

1. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

2. Abbate G., Saraceno E., Damasco A. In Sustaining Resources for Tomorrow (eds. Stagner, J. A. & Ting, D. S. K.) (Springer, 2020).

3. Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

4. Gao, X. et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020).

5. Ko, Y. et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 8, 536 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3