Direct gas-phase formation of formic acid through reaction of Criegee intermediates with formaldehyde

Author:

Luo Pei-LingORCID,Chen I-Yun,Khan M. Anwar H.ORCID,Shallcross Dudley E.ORCID

Abstract

AbstractOzonolysis of isoprene is considered to be an important source of formic acid (HCOOH), but its underlying reaction mechanisms related to HCOOH formation are poorly understood. Here, we report the kinetic and product studies of the reaction between the simplest Criegee intermediate (CH2OO) and formaldehyde (HCHO), both of which are the primary products formed in ozonolysis of isoprene. By utilizing time-resolved infrared laser spectrometry with the multifunctional dual-comb spectrometers, the rate coefficient kCH2OO+HCHO is determined to be (4.11 ± 0.25) × 10−12 cm3 molecule−1 s−1 at 296 K and a negative temperature dependence of the rate coefficient is observed and described by an Arrhenius expression with an activation energy of (–1.81 ± 0.04) kcal mol−1. Moreover, the branching ratios of the reaction products HCOOH + HCHO and CO + H2O + HCHO are explored. The yield of HCOOH is obtained to be 37–54% over the pressure (15–60 Torr) and temperature (283–313 K) ranges. The atmospheric implications of the reaction CH2OO + HCHO are also evaluated by incorporating these results into a global chemistry-transport model. In the upper troposphere, the percent loss of CH2OO by HCHO is found by up to 6% which can subsequently increase HCOOH mixing ratios by up to 2% during December-January-February months.

Funder

National Science and Technology Council, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3