Nanohybrids of atomically precise metal nanoclusters

Author:

Sahoo Koustav,Gazi Tapu RaihanORCID,Roy Soumyadip,Chakraborty IndranathORCID

Abstract

AbstractAtomically precise metal nanoclusters (NCs) with molecule-like structures are emerging nanomaterials with fascinating chemical and physical properties. Photoluminescence (PL), catalysis, sensing, etc., are some of the most intriguing and promising properties of NCs, making the metal NCs potentially beneficial in different applications. However, long-term instability under ambient conditions is often considered the primary barrier to translational research in the relevant application fields. Creating nanohybrids between such atomically precise NCs and other stable nanomaterials (0, 1, 2, or 3D) can help expand their applicability. Many such recently reported nanohybrids have gained promising attention as a new class of materials in the application field, exhibiting better stability and exciting properties of interest. This perspective highlights such nanohybrids and briefly explains their exciting properties. These hybrids are categorized based on the interactions between the NCs and other materials, such as metal-ligand covalent interactions, hydrogen-bonding, host-guest, hydrophobic, and electrostatic interactions during the formation of nanohybrids. This perspective will also capture some of the new possibilities with such nanohybrids.

Funder

DST | Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3