Abstract
AbstractStudies of molecular mixtures containing hydrogen sulfide (H2S) could open up new routes towards hydrogen-rich high-temperature superconductors under pressure. H2S and ammonia (NH3) form hydrogen-bonded molecular mixtures at ambient conditions, but their phase behavior and propensity towards mixing under pressure is not well understood. Here, we show stable phases in the H2S–NH3 system under extreme pressure conditions to 4 Mbar from first-principles crystal structure prediction methods. We identify four stable compositions, two of which, (H2S) (NH3) and (H2S) (NH3)4, are stable in a sequence of structures to the Mbar regime. A re-entrant stabilization of (H2S) (NH3)4 above 300 GPa is driven by a marked reversal of sulfur-hydrogen chemistry. Several stable phases exhibit metallic character. Electron–phonon coupling calculations predict superconducting temperatures up to 50 K, in the Cmma phase of (H2S) (NH3) at 150 GPa. The present findings shed light on how sulfur hydride bonding and superconductivity are affected in molecular mixtures. They also suggest a reservoir for hydrogen sulfide in the upper mantle regions of icy planets in a potentially metallic mixture, which could have implications for their magnetic field formation.
Funder
National Natural Science Foundation of China
RCUK | Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献