Abstract
AbstractArtificial photosynthesis is a desirable critical technology for the conversion of CO2 and H2O, which are abundant raw materials, into fuels and chemical feedstocks. Similar to plant photosynthesis, artificial photosynthesis can produce CO, CH3OH, CH4, and preferably higher hydrocarbons from CO2 using H2O as an electron donor and solar light. At present, only insufficient amounts of CO2-reduction products such as CO, CH3OH, and CH4 have been obtained using such a photocatalytic and photoelectrochemical conversion process. Here, we demonstrate that photocatalytic CO2 conversion with a Ag@Cr-decorated mixture of CaGa4O7-loaded Ga2O3 and the CaO photocatalyst leads to a satisfactory CO formation rate (>835 µmol h−1) and excellent selectivity toward CO evolution (95%), with O2 as the stoichiometric oxidation product of H2O. Our photocatalytic system can convert CO2 gas into CO at >1% CO2 conversion (>11531 ppm CO) at ambient temperatures and pressures.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Reference47 articles.
1. IPCC; Pachauri, R. K. & Meyer, L. A., eds. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, Geneva, 2014).
2. Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978).
3. Inoue, T., Fujishima, A., Konishi, S. & Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979).
4. Li, K., Peng, B. & Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 6, 7485–7527 (2016).
5. Mikkelsen, M., Jørgensen, M. & Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010).
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献