Abstract
AbstractNon-oxidative methane coupling has promising economic potential, but the catalytic and radical reactions become complicated at high temperatures. Here, we investigate the mechanism of non-oxidative methane coupling on an iron single-atom catalyst using density functional theory, and evaluate the catalytic performance under various reaction conditions using microkinetic modelling and experiments. Under typical reaction conditions (1300 K and 1 bar), C–C coupling and subsequent dehydrogenation to produce ethylene shows comparable energetics between the gas-phase and catalytic pathways. However, the microkinetic analysis reveals that the iron single-atom catalyst converted methane to mainly CH3 and H2 at reaction temperatures above 1300 K, and acetylene production is dominant over ethylene production. The sensitivity analysis suggests that increasing the C2 hydrocarbon yield by optimising the reaction conditions is limited. The experimental results obtained at 1293 K are consistent with the theoretical estimation that acetylene is the main C2 product over the iron single-atom catalyst.
Funder
National Research Foundation of Korea
Korea Research Institute of Chemical Technology
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献