Exploring the sequence-function space of microbial fucosidases

Author:

Martínez Gascueña AnaORCID,Wu Haiyang,Wang Rui,Owen C. David,Hernando Pedro J.ORCID,Monaco Serena,Penner Matthew,Xing Ke,Le Gall GwenaelleORCID,Gardner RichardORCID,Ndeh Didier,Urbanowicz Paulina A.ORCID,Spencer Daniel I. R.ORCID,Walsh MartinORCID,Angulo JesusORCID,Juge NathalieORCID

Abstract

AbstractMicrobial α-l-fucosidases catalyse the hydrolysis of terminal α-l-fucosidic linkages and can perform transglycosylation reactions. Based on sequence identity, α-l-fucosidases are classified in glycoside hydrolases (GHs) families of the carbohydrate-active enzyme database. Here we explored the sequence-function space of GH29 fucosidases. Based on sequence similarity network (SSN) analyses, 15 GH29 α-l-fucosidases were selected for functional characterisation. HPAEC-PAD and LC-FD-MS/MS analyses revealed substrate and linkage specificities for α1,2, α1,3, α1,4 and α1,6 linked fucosylated oligosaccharides and glycoconjugates, consistent with their SSN clustering. The structural basis for the substrate specificity of GH29 fucosidase from Bifidobacterium asteroides towards α1,6 linkages and FA2G2 N-glycan was determined by X-ray crystallography and STD NMR. The capacity of GH29 fucosidases to carry out transfucosylation reactions with GlcNAc and 3FN as acceptors was evaluated by TLC combined with ESI–MS and NMR. These experimental data supported the use of SSN to further explore the GH29 sequence-function space through machine-learning models. Our lightweight protein language models could accurately allocate test sequences in their respective SSN clusters and assign 34,258 non-redundant GH29 sequences into SSN clusters. It is expected that the combination of these computational approaches will be used in the future for the identification of novel GHs with desired specificities.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3