Abstract
Abstract
Overprediction is a major limitation of current crystal structure prediction (CSP) methods. It is difficult to determine whether computer-predicted polymorphic structures are artefacts of the calculation model or are polymorphs that have not yet been found. Here, we reported the well-known vitamin nicotinamide (NIC) to be a highly polymorphic compound with nine solved single-crystal structures determined by performing melt crystallization. A CSP calculation successfully identifies all six Z′ = 1 and 2 experimental structures, five of which defy 66 years of attempts at being explored using solution crystallization. Our study demonstrates that when combined with our strategy for cultivating single crystals from melt microdroplets, melt crystallization has turned out to be an efficient tool for exploring polymorphic landscapes to better understand polymorphic crystallization and to more effectively test the accuracy of theoretical predictions, especially in regions inaccessible by solution crystallization.
Funder
Natural Science Foundation of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献