Universal and efficient extraction of lithium for lithium-ion battery recycling using mechanochemistry

Author:

Dolotko OleksandrORCID,Gehrke Niclas,Malliaridou Triantafillia,Sieweck Raphael,Herrmann Laura,Hunzinger Bettina,Knapp MichaelORCID,Ehrenberg HelmutORCID

Abstract

AbstractThe increasing lithium-ion battery production calls for profitable and ecologically benign technologies for their recycling. Unfortunately, all used recycling technologies are always associated with large energy consumption and utilization of corrosive reagents, which creates a risk to the environment. Herein we report a highly efficient mechanochemically induced acid-free process for recycling Li from cathode materials of different chemistries such as LiCoO2, LiMn2O4, Li(CoNiMn)O2, and LiFePO4. The introduced technology uses Al as a reducing agent in the mechanochemical reaction. Two different processes have been developed to regenerate lithium and transform it into pure Li2CO3. The mechanisms of mechanochemical transformation, aqueous leaching, and lithium purification were investigated. The presented technology achieves a recovery rate for Li of up to 70% without applying any corrosive leachates or utilizing high temperatures. The key innovation is that the regeneration of lithium was successfully performed for all relevant cathode chemistries, including their mixture.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3