Abstract
AbstractThe engineering of atomically-precise nanopores in two-dimensional materials presents exciting opportunities for both fundamental science studies as well as applications in energy, DNA sequencing, and quantum information technologies. The exceptional chemical and thermal stability of hexagonal boron nitride (h-BN) suggest that exposed h-BN nanopores will retain their atomic structure even when subjected to extended periods of time in gas or liquid environments. Here we employ transmission electron microscopy to examine the time evolution of h-BN nanopores in vacuum and in air and find, even at room temperature, dramatic geometry changes due to atom motion and edge contamination adsorption, for timescales ranging from one hour to one week. The discovery of nanopore evolution contrasts with general expectations and has profound implications for nanopore applications of two-dimensional materials.
Funder
DOE | SC | Basic Energy Sciences
United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献