Abstract
AbstractRibonucleic acids (RNAs) are key to the central dogma of molecular biology. While Raman spectroscopy holds great potential for studying RNA conformational dynamics, current computational Raman prediction and assignment methods are limited in terms of system size and inclusion of conformational exchange. Here, a framework is presented that predicts Raman spectra using mixtures of sub-spectra corresponding to major conformers calculated using classical and ab initio molecular dynamics. Experimental optimization allowed purines and pyrimidines to be characterized as predominantly syn and anti, respectively, and ribose into exchange between equivalent south and north populations. These measurements are in excellent agreement with Raman spectroscopy of ribonucleosides, and previous experimental and computational results. This framework provides a measure of ribonucleoside solution populations and conformational exchange in RNA subunits. It complements other experimental techniques and could be extended to other molecules, such as proteins and carbohydrates, enabling biological insights and providing a new analytical tool.
Funder
RCUK | Biotechnology and Biological Sciences Research Council
RCUK | Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献