Investigation of resonance-stabilized radicals associated with soot particle inception using advanced electron paramagnetic resonance techniques

Author:

Elias Jessy,Faccinetto AlessandroORCID,Vezin HervéORCID,Mercier XavierORCID

Abstract

AbstractIn order to tackle the climate emergency, it is imperative to advance cleaner technologies to reduce pollutant emission as soot particles. However, there is still a lack of complete understanding of the mechanisms responsible for their formation. In this work, we performed an investigation devoted to the study of persistent radicals potentially involved in the formation of soot particles, by continuous wave and pulsed electron paramagnetic resonance. This work provides experimental evidence of the presence in nascent soot of highly branched, resonance-stabilized aromatic radicals bearing aliphatic groups, linked together by short carbon chains, and reinforced by non-covalent π-π interactions. These radicals appear to be highly specific of nascent soot and quickly disappear with the increasing soot maturity. Their presence in nascent soot could represent an underestimated health risk factor in addition to the already well documented effect of the high specific surface and the presence of harmful adsorbates.

Funder

ADEME CPER CLIMIBIO LABEX CAPPA

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3