Abstract
AbstractControlling tumor-specific alterations in metabolic pathways is a useful strategy for treating tumors. The glyoxalase pathway, which metabolizes the toxic electrophile 2-methylglyoxal (MG), is thought to contribute to tumor pathology. We developed a live cell-based high-throughput screening system that monitors the metabolism of MG to generate d-lactate by glyoxalase I and II (GLO1 and GLO2). It utilizes an extracellular coupled assay that uses d-lactate to generate NAD(P)H, which is detected by a selective fluorogenic probe designed to respond exclusively to extracellular NAD(P)H. This metabolic pathway-oriented screening is able to identify compounds that control MG metabolism in live cells, and we have discovered compounds that can directly or indirectly inhibit glyoxalase activities in small cell lung carcinoma cells.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献