Abstract
AbstractAmorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densities ρLDA ≈ 0.94 g/cm3 and ρHDA ≈ 1.15−1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced a medium-density amorphous ice (MDA, ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated at P ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared at P = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA.
Publisher
Springer Science and Business Media LLC
Reference86 articles.
1. Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ I at 77 K and 10 kbar: A new method of making amorphous solids. Nature 310, 393 (1984).
2. Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76 (1985).
3. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329 (1998).
4. Angell, C. A. Amorphous water. Annu. Rev. Phys. Chem. 55, 559 (2004).
5. Loerting, T. & Giovambattista, N. Amorphous ices: experiments and numerical simulations. J. Phys.: Condens. Matter 18, R919 (2006).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献