Abstract
AbstractThe electrolytic reduction of CO2 in aqueous media promises a pathway for the utilization of the green house gas by converting it to base chemicals or building blocks thereof. However, the technology is currently not economically feasible, where one reason lies in insufficient reaction rates and selectivities. Current research of CO2 electrolysis is becoming aware of the importance of the local environment and reactions at the electrodes and their proximity, which can be only assessed under true catalytic conditions, i.e. by in operando techniques. In this work, multinuclear in operando NMR techniques were applied in order to investigate the evolution of the electrolyte chemistry during CO2 electrolysis. The CO2 electroreduction was performed in aqueous NaHCO3 or KHCO3 electrolytes at silver electrodes. Based on 13C and 23Na NMR studies at different magnetic fields, it was found that the dynamic equilibrium of the electrolyte salt in solution, existing as ion pairs and free ions, decelerates with increasingly negative potential. In turn, this equilibrium affects the resupply rate of CO2 to the electrolysis reaction from the electrolyte. Substantiated by relaxation measurements, a mechanism was proposed where stable ion pairs in solution catalyze the bicarbonate dehydration reaction, which may provide a new pathway for improving educt resupply during CO2 electrolysis.
Funder
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry
Reference64 articles.
1. Fenton, H. J. H. LXIV.–the reduction of carbon dioxide to formaldehyde in aqueous solution. J. Chem. Soc. Trans. 91, 687–693 (1907).
2. Zhu, D. D., Liu, J. L. & Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–52 (2016).
3. Whipple, D. T. & Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).
4. Jhong, H. R., Ma, S. C. & Kenis, P. J. A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).
5. Jeanty, P. et al. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Utilization 24, 454–462 (2018).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献