Instability of U3Si2 in pressurized water media at elevated temperatures

Author:

Migdisov ArtachesORCID,Nisbet Haylea,Li NanORCID,White Joshua,Xu Hongwu,Nelson Andrew,Roback Robert

Abstract

AbstractFollowing the Fukushima Daiichi accident, significant efforts from industry and the scientific community have been directed towards the development of alternative nuclear reactor fuels with enhanced accident tolerance. Among the proposed materials for such fuels is a uranium silicide compound (U3Si2), which has been selected for its enhanced thermal conductivity and high density of uranium compared to the reference commercial light water reactor (LWR) nuclear fuel, uranium oxide (UO2). To be a viable candidate LWR fuel, however, U3Si2 must also demonstrate that, in the event of this fuel coming in contact with aqueous media, it will not degrade rapidly. In this contribution, we report the results of experiments investigating the stability of U3Si2 in pressurized water at elevated temperatures and identify the mechanisms that control the interaction of U3Si2 under these conditions. Our data indicate that the stability of this material is primarily controlled by the formation of a layer of USiO4 (the mineral, coffinite) at the surface of U3Si2. The results also show that these layers are destabilized at T > 300 °C, leading to the complete decomposition of U3Si2 and its pulverization due to its full oxidation to UO2.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3