Decreased serum potassium may disturb sleep homeostasis in essential hypertensives

Author:

Heizhati Mulalibieke,Zhang Yu,Shao Liang,Wang Yingchun,Yao Xiaoguang,Abulikemu Suofeiya,Zhang Delian,Chang Guijuan,Zhou Ling,Li Nanfang

Abstract

AbstractThe aim is to investigate the association between alterations in the serum potassium (K+) concentration and sleep architecture parameters in essential hypertensives. Two hundred ninety-two hypertensives undergoing polysomnography and providing blood samples were recruited. The sleep architecture was composed of sleep stages 1 (N1), 2 (N2), 3 (N3), 4 (N4) and REM. The light sleep stage (LST) was composed of N1 + N2, and the deep sleep stage (DST) was composed of N3 + N4. The potentialrelationships between electrolytes and sleep parameters were determined via univariate and multivariate analyses. The subjects were divided into two groups via the serum K+ median (3.86 mmol/L). The K+ < 3.86 mmol/L group showed significantly decreased N1 (7.10 ± 4.55% vs 8.61 ± 5.23%, p = 0.002), LST (71.48 ± 11.33% vs 75.92 ± 17.08%, p = 0.013), and periodic leg movement during sleep related to microarousals (MA) /arousal (PLMS-A) [4 (1~10) vs 8 (3~15)/night, p < 0.001] and increased REM (17.38 ± 6.43% vs 15.37 ± 6.18%, p = 0.007) compared to the K+ ≥ 3.86 mmol/L group. A subdivided analysis by gender showed that these changes were more statistically significant in men than in women. Significant positive correlations were identified between K+ and N1 (r = 0.169, p = 0.004), as well as PLMS-A (r = 0.222, p < 0.001) in subjects. Compared to women, a significantly strong correlation was identified between K+ and REM sleep in men (r = 0.158, p = 0.028 vs. r = 0.078, p = 0.442). Multiple linear regression analysis indicated that K+ is significantly associated with N1 in all subjects (p = 0.03) and with REM in men (p = 0.008), even after adjusting for confounders. Decreased K+ may disturb the homeostasis of the sleep architecture, and gender may interfere with their links in the hypertensive population.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Physiology,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3