Author:
Peng Xiangyu,Xu Huoyao,Liu Jie,Wang Junlang,He Chaoming
Abstract
AbstractVoice disorders are very common in the global population. Many researchers have conducted research on the identification and classification of voice disorders based on machine learning. As a data-driven algorithm, machine learning requires a large number of samples for training. However, due to the sensitivity and particularity of medical data, it is difficult to obtain sufficient samples for model learning. To address this challenge, this paper proposes a pretrained OpenL3-SVM transfer learning framework for the automatic recognition of multi-class voice disorders. The framework combines a pre-trained convolutional neural network, OpenL3, and a support vector machine (SVM) classifier. The Mel spectrum of the given voice signal is first extracted and then input into the OpenL3 network to obtain high-level feature embedding. Considering the effects of redundant and negative high-dimensional features, model overfitting easily occurs. Therefore, linear local tangent space alignment (LLTSA) is used for feature dimension reduction. Finally, the obtained dimensionality reduction features are used to train the SVM for voice disorder classification. Fivefold cross-validation is used to verify the classification performance of the OpenL3-SVM. The experimental results show that OpenL3-SVM can effectively classify voice disorders automatically, and its performance exceeds that of the existing methods. With continuous improvements in research, it is expected to be considered as auxiliary diagnostic tool for physicians in the future.
Funder
Sichuan Province Science and Technology Support Program
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献