Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites

Author:

Guo Bin,Zhang Bo,Su Yi,Zhang Dingming,Wang Yan,Bian Yi,Suo Liang,Guo Xianan,Bai Haorui

Abstract

AbstractHeavy metals contaminations in mining areas aroused wide concerns globally. Efficient evaluation of its pollution status is a basis for further soil reclamation. Visible and near–infrared reflectance (Vis–NIR) spectroscopy has been diffusely used for retrieving heavy metals concentrations. However, the reliability and feasibility of calibrated models were still doubtful. The present study estimated zinc (Zn) concentrations via the random forest (RF) and partial least squares regression (PLSR) using ground in-situ Zn concentrations as well as soil spectral reflectance at an Opencast Coal Mine of Ordos, China in February 2020. The coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and the ratio of performance to deviation (RPD) were selected to assess the robustness of the methods in estimating Zn contents. Moreover, the characteristic bands were chosen by Pearson correlation analysis and Boruta Algorithm. Finally, the comparison between RF and PLSR combined with eight spectral reflectance transformation methods was conducted for four concentration groups to determine the optimal model. The results indicated that: (1) Zn contents represented a skewed distribution (coefficient of variation (CV) = 33%); (2) the spectral reflectance tended to decrease with the increase of Zn contents during 580–1850 nm based on Savitzky–Golay smoothing (SG); (3) the continuous wavelet transform (CWT) demonstrated higher effectiveness than other spectral reflectance transformation methods in enhancing spectral responses, the R2 between Zn contents and the soil spectral reflectance achieved the highest (R2 = 0.71) by using CWT; (4) the RF combined with CWT exhibited the best performance than other methods in the current study (R2 = 0.97, RPD = 3.39, RMSE = 1.05 mg kg−1, MAE = 0.79 mg kg−1). The current study supplied a scientific scheme and theoretical support for predicting heavy metals concentrations via the Vis–NIR spectral method in possible contaminated areas such as coal mines and metallic mineral deposit areas.

Funder

the Natural Science Foundation of Shaanxi Province

the Open Foundation of the State Key Laboratory of Urban and Regional Ecology of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference101 articles.

1. Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C. & Yang, Z. P. Potential ecological risk assessment and prediction of soil heavy-metals pollution around coal gangue dump. Nat. Hazard. Earth Syst. 2, 1977–2010 (2014).

2. Wang, Q. & Li, R. Decline in China’s coal consumption: An evidence of peak coal or a temporary blip?. Energ. Policy 108, 696–701 (2017).

3. Li, W. et al. Addressing the Co2 emissions of the world’s largest coal producer and consumer: Lessons from the Haishiwan coalfield, China. Energy 80, 400–413 (2015).

4. Luo, P. et al. Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. Plos One 14, e219009 (2019).

5. Luo, P. et al. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. Uk. 8, 12623 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3