Ultra-high resolution, multi-scale, context-aware approach for detection of small cancers on mammography

Author:

Rangarajan Krithika,Gupta Aman,Dasgupta Saptarshi,Marri Uday,Gupta Arun Kumar,Hari Smriti,Banerjee Subhashis,Arora Chetan

Abstract

AbstractWhile detection of malignancies on mammography has received a boost with the use of Convolutional Neural Networks (CNN), detection of cancers of very small size remains challenging. This is however clinically significant as the purpose of mammography is early detection of cancer, making it imperative to pick them up when they are still very small. Mammography has the highest spatial resolution (image sizes as high as 3328 × 4096 pixels) out of all imaging modalities, a requirement that stems from the need to detect fine features of the smallest cancers on screening. However due to computational constraints, most state of the art CNNs work on reduced resolution images. Those that work on higher resolutions, compromise on global context and work at single scale. In this work, we show that resolution, scale and image-context are all important independent factors in detection of small masses. We thereby use a fully convolutional network, with the ability to take any input size. In addition, we incorporate a systematic multi-scale, multi-resolution approach, and encode image context, which we show are critical factors to detection of small masses. We show that this approach improves the detection of cancer, particularly for small masses in comparison to the baseline model. We perform a single institution multicentre study, and show the performance of the model on a diagnostic mammography dataset, a screening mammography dataset, as well as a curated dataset of small cancers < 1 cm in size. We show that our approach improves the sensitivity from 61.53 to 87.18% at 0.3 False Positives per Image (FPI) on this small cancer dataset. Model and code are available from https://github.com/amangupt01/Small_Cancer_Detection

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3