Antimicrobial and antioxidant potential of the silver nanoparticles synthesized using aqueous extracts of coconut meat (Cocos nucifera L)

Author:

Rizwana Humaira,Aljowaie Reem M.,Al Otibi Fatimah,Alwahibi Mona S.,Alharbi Saleh Ali,Al asmari Saeed Ali,Aldosari Noura S.,Aldehaish Horiah A.

Abstract

AbstractHuman pathogenic fungi and bacteria pose a huge threat to human life, accounting for high rates of mortality every year. Unfortunately, the past few years have seen an upsurge in multidrug resistance pathogens. Consequently, finding an effective alternative antimicrobial agent is of utmost importance. Hence, this study aimed to phytofabricate silver nanoparticles (AgNPs) using aqueous extracts of the solid endosperm of Cocos nucifera L, also known as coconut meat (Cm). Green synthesis is a facile, cost-effective and eco-friendly methods which has several benefits over other physical and chemical methods. The synthesized nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The Cm-AgNPs showed a UV–Vis peak at 435 nm and were crystalline and quasi-spherical, with an average size of 15 nm. The FTIR spectrum displayed functional groups of phenols, alkaloids, sugars, amines, and carbonyl compounds, which are vital in the reduction and capping of NPs. The antibacterial and anticandidal efficacy of the Cm-AgNPs was assessed by the agar-well diffusion method and expressed as a zone of inhibition (ZOI). Amongst all the test isolates, Staphylococcus epidermidis, Candida auris, and methicillin-resistant Staphylococcus epidermidis were more susceptible to the NPs with a ZOI of 26.33 ± 0.57 mm, 19.33 ± 0.57 mm, and 18 ± 0.76 mm. The MIC and MFC values for Candida spp. were higher than the bacterial test isolates. Scanning electron microscopic studies of all the test isolates at their MIC concentrations showed drastically altered cell morphology, indicating that the NPs could successfully cross the cell barrier and damage the cell integrity, causing cell death. This study reports the efficacy of Cm-AgNPs against several Candida and bacterial strains, which had not been reported in earlier studies. Furthermore, the synthesized AgNPs exhibited significant antioxidant activity. Thus, the findings of this study strongly imply that the Cm-AgNPs can serve as promising candidates for therapeutic applications, especially against multidrug-resistant isolates of Candida and bacteria. However, further investigation is needed to understand the mode of action and biosafety.

Funder

This Research was supported by a grant from “Research Center of the Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3