Iridescence and hydrophobicity have no clear delineation that explains flower petal micro-surface

Author:

Garcia Jair E.,Shrestha Mani,Ospina-Rozo Laura,Dekiwadia Chaitali,Field Matthew R.,Ma Ji Sheng,Tran Nhiem,Dyer Adrian G.,Fox Kate,Greentree Andrew D.

Abstract

AbstractPlant organs including flowers and leaves typically have a variety of different micro-structures present on the epidermal surface. These structures can produce measurable optical effects with viewing angle including shifts in peak reflectance and intensity; however, these different structures can also modulate hydrophobic properties of the surfaces. For some species optical effects have been proposed to act as signals to enhance pollination interactions, whilst the ability to efficiently shed water provides physiological advantages to plants in terms of gas exchange and reducing infections. Currently, little is known about epidermal surface structure of flowering plants in the Southern Hemisphere, and how micro-surface may be related with either hydrophobicity or visual signalling. We measured four Australian native species and two naturalised species using a combination of techniques including SEM imaging, spectral sampling with a goniometer and contact angle measurements. Spectral data were evaluated in relation to published psychophysics results for important pollinators and reveal that potential visual changes, where present, were unlikely to be perceived by relevant pollinators. Nevertheless, hydrophobicity also did not simply explain petal surfaces as similar structures could in some cases result in very different levels of water repellency.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3